

VITOCELL 340-/360-M

Heating water buffer cylinder with DHW heating 750 and 1000 litre capacity

Datasheet

Part numbers and prices: see pricelist

VITOCELL 340-M Type SVK

Multi-mode heating water buffer cylinder with integral DHW heating

■ Heating water: 705/953 I capacity

■ DHW: 33/33 I capacity

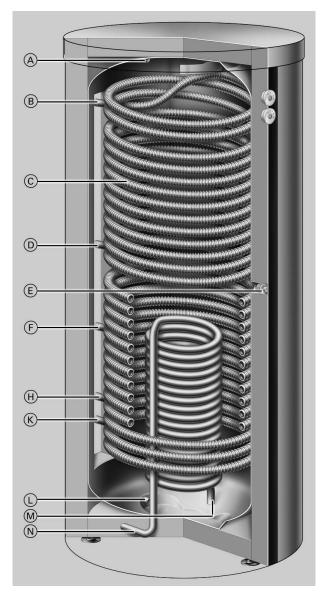
■ Solar heat exchanger: 12/14 I capacity

VITOCELL 360-M Type SVS

Multi-mode heating water buffer cylinder with stratification primary system and integral DHW heating

■ Heating water: 705/953 I capacity

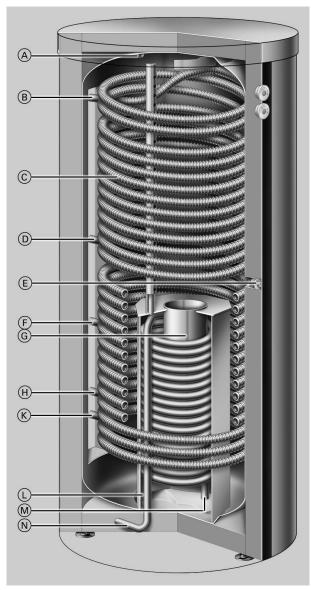
■ DHW: 33/33 I capacity


■ Solar heat exchanger: 12/14 I capacity

Product information Vitocell 340-M and Vitocell 360-M

Connection of several heat sources and hygienic DHW heating with high draw-off rates; space-efficient in a single combi cylinder.

Benefits at a glance


- Vitocell 340-M and Vitocell 360-M the combination of heating water buffer cylinder and DHW cylinder.
- For heating systems with several heat sources. Particularly suitable in connection with Viessmann solar heating systems for DHW heating and backing up the heating function of your system.
- Connectors at different heights enable the utilisation of different heat sources, e.g. solid fuel boiler or heat pump. The temperature stratification remains unaffected.
- Low space requirement and installation effort combined DHW cylinder and buffer cylinder.
- Corrugated DHW pipe made from high-alloy stainless steel, resilient and stress-free integration.
- Optimum exploitation of solar energy through efficient heat transfer in the lower section via the large heat exchanger surface of the corrugated DHW pipe.
- Vitocell 360-M: The stratification primary system ensures the layering of solar energy-heated water at different temperatures, making DHW heated by solar energy available very quickly.

Vitocell 340-M (type SVK) – multi-mode heating water buffer cylinder with integral DHW heating

- A Heating water flow 1 / air vent valve
- B DHW / DHW circulation
- © Corrugated DHW pipe made from stainless steel
- D Heating water flow 2 / heating water return 1
- E Electric immersion heater EHE
- F Heating water return 2
- Heating water return 3
- (K) Cold water
- (L) Drain
- M Heating water return / Solar heating system drain
- N Heating water flow / Solar heating system air vent valve

Benefits at a glance (cont.)

Vitocell 360-M (type SVS) – multi-mode heating water buffer cylinder with stratification primary system and integral DHW heating

- A Heating water flow 1 / air vent valve
- B DHW / DHW circulation
- © Corrugated DHW pipe made from stainless steel
- D Heating water flow 2 / heating water return 1
- E Electric immersion heater EHE
- F Heating water return 2
- G Stratification primary system
- Heating water return 3
- K Cold water

- Drain
 Heating water return / Solar heating system drain
 Heating water flow / Solar heating system air vent valve

For storing heating water and DHW heating in conjunction with solar collectors, heat pumps and solid fuel boilers.


Suitable for the following systems:

- DHW temperatures up to 95 °C
- Heating water flow temperature up to 110 °C

- Solar flow temperature up to 140 °C
- Operating pressure on the heating water side up to 3 bar
- Solar side operating pressure up to 10 bar
- Operating pressure on the **DHW side** up to **10 bar**

Cylinder capacity		I	750	1000
Heating water content			705	953
DHW content		1	33	33
Solar indirect coil content		1	12	14
DIN reg. no.				
- Vitocell 340-M			0262/06	-10MC/E
Vitocell 360-M			0263/06	-10MC/E
Dimensions				
Length (∅)				
 incl. thermal insulation 	а	mm	960	1060
 excl. thermal insulation 	0	mm	750	850
Width	b	mm	1000	1100
Height				
 incl. thermal insulation 	С	mm	2100	2100
 excl. thermal insulation 		mm	2002	2044
Height when tilted				
 excl. thermal insulation 		mm	2070	2130
Minimum installation height		mm	2190	2190
Weight				
 incl. thermal insulation 		kg	212	240
 excl. thermal insulation 		kg	197	224
Connections				
Heating water flow and return		R	1"	11/4"
Cold water, DHW		R	1"	1"
Heating water flow and return (solar)		G	1"	1"
Solar heat exchanger				
Heating surface		m ²	1.8	2.1
DHW heat exchanger				
Heating surface		m ²	7.2	7.2
Max. connectable aperture area Vitosol		m ²	12	20
Standby heat loss q _{BS}		kWh/24 h	1.47	1.55
(standard parameter)				
Standby capacity V _{aux}		l	341	433
Solar capacity V _{sol}		l	409	567

Vitocell 340-M

E Drain

EL Air vent valve

EL_s Solar indirect coil ventilation

ELH Immersion heater (Fem. connection Rp 1½")

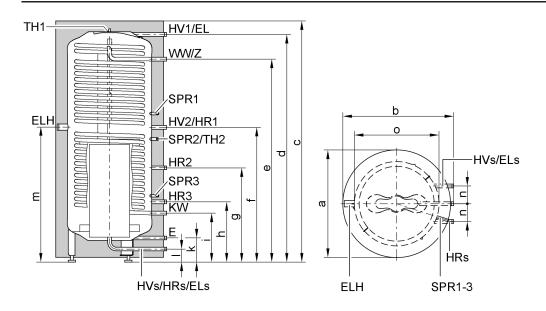
HR Heating water return

HR_s Heating water return, solar heating system

HV Heating water flow

HV_s Heating water flow, solar heating system

KW Cold water


TH Thermometer

SPR Temperature sensor or thermostat WW DHW

DHW circulation (threaded DHW circulation fitting, accessory)

Cylinder capacity		I	750	1000
Length (∅)	а	mm	960	1060
Width	b	mm	1000	1100
Height	С	mm	2100	2100
	d	mm	1980	2023
	е	mm	1761	1747
	f	mm	1156	1142
	g	mm	796	814
	h	mm	526	512
	i	mm	426	412
	k	mm	173	136
	1	mm	75	75
	m	mm	1156	1142
	n	mm	157	185
Length without thermal	0	mm	750	850
insulation				

Vitocell 360-M

E Drain

EL Air vent valve

EL_s Solar indirect coil ventilation

ELH Immersion heater

(Fem. connection Rp 11/2")

HR Heating water return

 $\ensuremath{\mathsf{HR}_{\mathsf{s}}}$ Heating water return, solar heating system

HV Heating water flow

 ${\rm HV_s}~{\rm Heating}$ water flow, solar heating system

KW Cold water

TH Thermometer

SPR Temperature sensor or thermostat

WW DHW

Z DHW circulation (threaded DHW circulation fitting, accessory)

Cylinder capacity		I	750	1000
Length (∅)	а	mm	960	1060
Width	b	mm	1000	1100
Height	С	mm	2100	2100
	d	mm	1980	2023
	е	mm	1761	1747
	f	mm	1156	1142
	g	mm	796	814
	h	mm	526	512
	i	mm	426	412
	k	mm	173	136
	1	mm	75	75
	m	mm	1156	1142
	n	mm	157	185
Length without ther- mal insulation	0	mm	750	850

Continuous output

Continuous output	kW	15	22	33
for DHW heating from 10 to 45 °C and a heating water flow temperature of 70 °C at the heat-	l/h	368	540	810
ing water throughput stated below (tested at HV ₁ /HR ₁)				
Heating water flow rate for the stated continuous output	l/h	252	378	610
Continuous output	kW	15	22	33
for DHW heating from 10 to 60 °C and a heating water flow temperature of 70 °C at the heat-	l/h	258	378	567
ing water throughput stated below (tested at HV ₁ /HR ₁)				
Heating water flow rate for the stated continuous output	l/h	281	457	836

Information regarding continuous output

When designing the system for continuous output as stated or calculated, allow for the corresponding circulation pump. The stated continuous output is only achieved when the rated boiler output \geq continuous output.

Performance factor N_L

To DIN 4708.

Cylinder storage temperature T_{cyl} = cold water inlet temperature

+ 50 K $^{+5}$ K/-0 K and 70 °C heating water flow temperature.

Performance factor N _L subject to the delivered boiler output (Q _D)						
Cylinder capacity	1	750	1000			
Q _D in kW						
15		2.00	2.60			
18		2.25	2.90			
22		2.50	3.20			
27		2.75	3.80			
33		3.00	4.40			

Information regarding performance factor

The performance factor N_L varies according to the cylinder storage temperature T_{cyl} .

Standard values for

- $T_{cyl} = 60 \, ^{\circ}\text{C} \rightarrow 1.0 \times N_L$
- $T_{cyl} = 55 \, ^{\circ}C \rightarrow 0.75 \times N_L$
- $T_{cyl} = 50 \text{ °C} \rightarrow 0.55 \times N_L$
- $T_{cyl} = 45 \, ^{\circ}C \rightarrow 0.3 \times N_{L}$

Peak output (over 10 minutes)

Relative to the performance factor $N_L.$ DHW heating from 10 to 45 $^{\circ}\text{C}$ and 70 $^{\circ}\text{C}$ heating water flow temperature.

Peak output (I/10 min) subject to the delivered boiler output (Q _D)							
Cylinder capacity	I	750	1000				
Q _D in kW		Peak	output				
15		190	214				
18		200	226				
22		210	236				
27		220	256				
33		230 I / 10 min	273 I / 10 min				

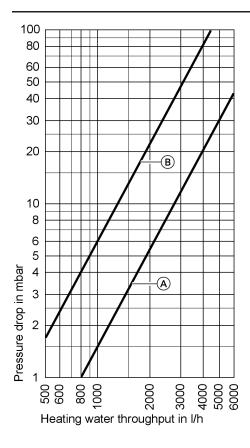
Max. draw-off rate (over 10 minutes)

Relative to the performance factor $N_{\text{\tiny L}}$.

With booster heater.

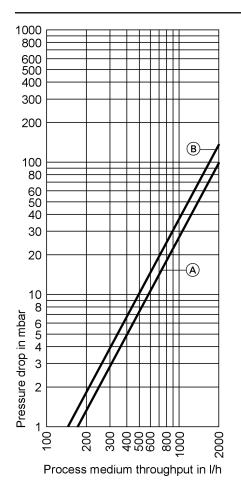
DHW heating from 10 to 45 °C and 70 °C heating water flow tem-

Max. DHW drawing rate (I/min) subject to the delivered boiler output (Q _□)					
Cylinder capacity	1	750	1000		
Q _D in kW	max. draw-off rate				
15		19.0	21.4		
18		20.0	22.6		
22		21.0	23.6		
27		22.0	25.6		
33		23.0	27.3		

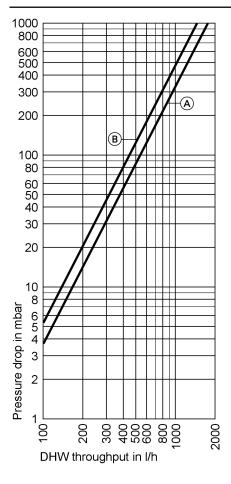

Available water volume

Cylinder content heated to 60 °C.

Without booster heater.


Draw-off rate	l/min	10	20
Available water volume			
Water at t = 45 °C (mixed temperature)			
750 I		255	190
1000 I		315	234

Pressure drop


Pressure drop on the heating water side

- A Cylinder capacity 1000 I
- B Cylinder capacity 750 I

Pressure drop on the solar side

- A Cylinder capacity 750 IB Cylinder capacity 1000 I

Pressure drop on the DHW side 750/1000 I

- (A) Without threaded DHW circulation fitting
- B With threaded DHW circulation fitting

Delivered condition

Vitocell 340-M, type SVK 750 and 1000 litre capacity

Multi-mode heating water buffer cylinder, made from steel with integral stainless steel indirect coil for DHW heating.

- 3 welded-in sensor wells
- 2 thermometers
- Adjustable threaded feet
- Air vent valve for the indirect solar coils

Packed separately and fitted to the crate are the following compo-

■ Thermal insulation made from thick polyester fleece

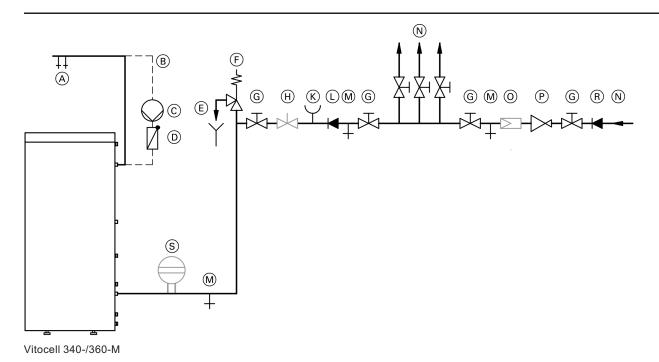
The colour of the plastic-coated thermal insulation is Vitosilver.

Vitocell 360-M, type SVS 750 and 1000 litre capacity

Multi-mode heating water buffer cylinder, made from steel with stratification primary system and integral stainless steel indirect coil for DHW heating.

- 3 welded-in sensor wells
- 2 thermometers
- Fitted adjustable feet
- Air vent valve for the indirect solar coils

Packed separately and fitted to the crate are the following compo-


■ Thermal insulation made from thick polyester fleece

The colour of the plastic-coated thermal insulation is Vitosilver.

Design information Vitocell 340-M (type SVK) / Vitocell 360-M (type SVS)

DHW connection

Connection to DIN 1988

- (A) DHW
- B DHW circulation line
- © DHW circulation pump
- (D) Spring-loaded check valve
- (E) Visible blow-off line outlet
- F Safety valve
- G Shut-off valve
- H Flow regulating valve*1 (installation recommended)

The safety valve must be installed.

- Pressure gauge connection
- (L) Non-return valve
- M Drain
- (N) Cold water
- O Drinking water filter*2
- Pressure reducer to DIN 1988-2 issue Dec.1988
- Non-return valve/pipe separator
- S Diaphragm expansion vessel, suitable for drinking water

Recommendation: Install the safety valve higher than the top edge of the cylinder. This protects the valve against contamination, scaling and high temperatures. The DHW cylinder must then not be drained when working on the safety valve.

Heating water flow temperatures in excess of 110 °C

For these operating conditions, DIN 4753 recommends the installation of a type-tested high limit safety cut-out into the cylinder, which limits the temperature to 95 °C.

Warranty

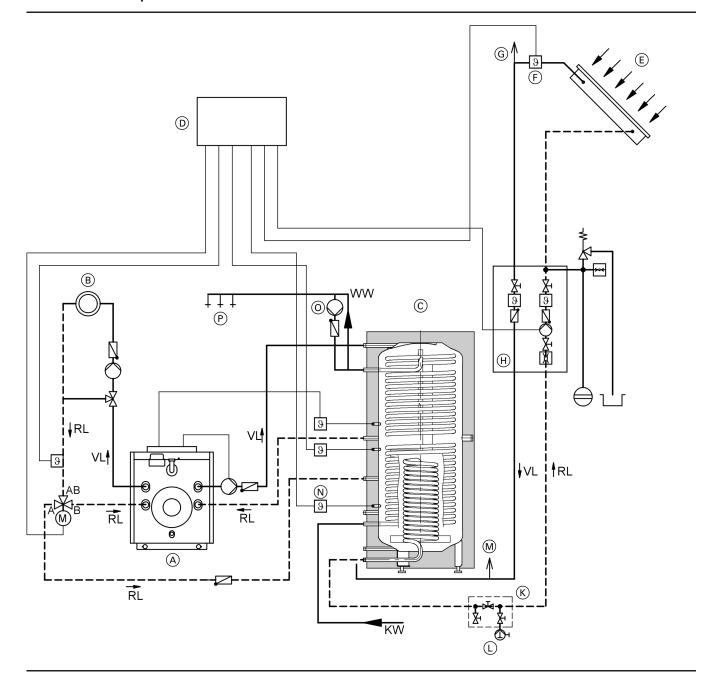
Our warranty for DHW cylinders requires that the water to be heated meets the DHW quality in accordance with current potable water regulations and that existing water treatment systems work properly.

Heat transfer surface

The corrosion-resistant, protected heat transfer surface (DHW/ process medium) corresponds to type C to DIN 1988-2.

^{*1}We recommend the installation and adjustment of the maximum water flow rate in accordance with 10 minute performance of the DHW

^{*&}lt;sup>2</sup>According to DIN 1988-2, a drinking water filter should be installed in systems with metal pipework. Viessmann and DIN 1988 also recommend the installation of a drinking water filter when using plastic pipes to prevent contamination entering the DHW system.


Immersion heater

When using third party products, the threaded heater element must have an unheated length of at least 100 mm.

Technical guide

For further information regarding the design and sizing, see the technical guides "Vitocal", "Vitosol" and "Vitolig".

Installation example with Vitocell 340-M

KW Cold water

WW DHW

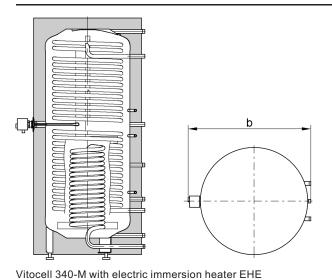
RL Return

VL Flow Oil/gas fired boiler \bigcirc

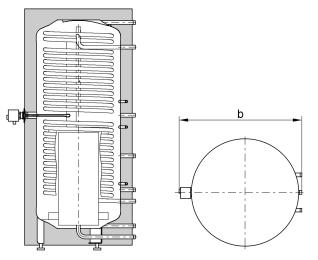
- Heating circuit
- Vitocell 340-M
- B (C) (D) Solar control unit
- (E) (F) Solar collector
- Collector temperature sensor

- Air vent valve*1
- (G) (H) Solar-Divicon (pump station)
- (K)Fill valve
- Manual solar fill pump

- Air separator*2
- Cylinder temperature sensor
- <u></u> DHW circulation
- Draw-off points


Accessories Vitocell 340-M (type SVK) / Vitocell 360-M (type SVS)

Electric immersion heater EHE

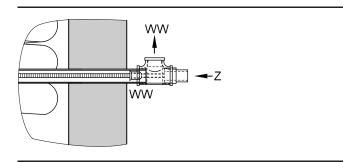

Current type and rated voltage 3/N/PE 400 V/50 Hz Protection: IP 5						ection: IP 54		
Power range				max. 6 kW			max. 12 kW	
Rated power consumption in star operation/during quick heat-up	ndard	kW	2	4	6	4	8	12
Rated current		Α	8.7	8.7	8.7	17.4	17.4	17.4
Heat-up time from 10 to 60 °C	750 I	h	10	5	3.4	_	_	
	1000 I	h	12.6	6.3	4.3	6.3	3.1	2.1

Multi-mode heating water buffer cylinder with DHW heating and electric immersion heater EHE

Vitocell			340)-M	360-M	
Cylinder capacity (total)		I	750	1000	750	1000
Cylinder capacity (heating water/DHW/solar)		I	705/33/12	953/33/14	705/33/12	953/33/14
Available capacity to be heated with an immersion	n heater		341	433	341	433
Dimensions						
Width b (with electric immersion heater EHE)		mm	1107	1107	1107	1107
Minimum wall clearance for the installation of	2/4/6 kW	mm	650	650	650	650
an electric immersion heater EHE	4/8/12 kW	mm	_	950	_	950
Weight						
Vitocell 340-/360-M		kg	212	240	212	240
Electric immersion heater EHE	2/4/6 kW	kg	2	2	2	2
	4/8/12 kW	kg	_	3	_	3

Vitocell 360-M with electric immersion heater EHE

b = Width incl. electric immersion heater EHE

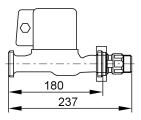

 $^{^{*1}}$ Install at least one air vent valve (quick-acting air vent valve with shut-off valve or a manual vent valve) at the highest point of the sys-

 $^{^{^{\}star}2}$ Mount the air separator at an accessible point in the flow pipe.

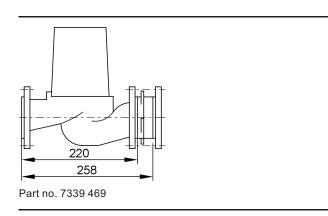
Accessories Vitocell 340-M (type SVK) / Vitocell 360-M (type SVS) (cont.)

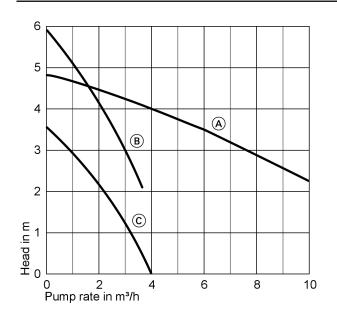
Threaded DHW circulation fitting

For connecting a DHW circulation line to the DHW connection.



WW DHW


DHW circulation


Cylinder primary pump

Part no.		7339 467	7339 468	7339 469
Pump type		UP 25-40	VIRS 30/6-1	VI TOP-S 40/4
Voltage	V~	230	230	230
Power consumption	W	55-65	110-140	155-195
Connection	R	1"	11/4"	_
	DN	_	_	40
Connecting cable	m	4.7	4.7	4.7
for the boiler		up to 40 kW	from 40 to 70 kW	from 70 kW

Part no. 7339 467 and 7339 468

- A Part no. 7339 469
- B Part no. 7339 468C Part no. 7339 467

Accessories Vitocell 340-M (type SVK) / Vitocell 360-M (type SVS) (cont.)

Safety assembly to DIN 1988

Safety assembly, comprising:

- Shut-off valve
- Non-return valve and test connector
- Pressure gauge connector
- Diaphragm safety valve DN 20/R 1"

maximum heating load 150 kW

- 10 bar: Part no. 7180 662

Printed on environmentally friendly, chlorine-free bleached paper

Viessmann Werke GmbH&Co KG D-35107 Allendorf Telephone: +49 6452 70-0 Fax: +49 6452 70-2780 www.viessmann.com

Subject to technical modifications.

Viessmann Limited Hortonwood 30, Telford Shropshire, TF1 7YP, GB Telephone: +44 1952 675000 Fax: +44 1952 675040 E-mail: info-uk@viessmann.com 5822 387-1 GB